FINAL REPORT

Ada Technology Support
for NASA-GSFC

Contract No. NAS5-29173
<

May 9, 1986

Adasoft, Inc.
9300 Annapolis Road
Lanham, Maryland 20706

{NASA-CR-181212) ADA TECHENCLOGY SUﬁﬁDBT POR
EASA-GSEC Final EKeport (Adascft) ngL 098
Avail: NT11S BC AC2/MF A0Q1

G3/61

N87~27435

Unclas
0091217

TABLE OF CONTENTS

INTRODUCTION . &« ¢ o ¢ o « o o o o«

SUMMARY OF WORK PERFORMED
2.1 MNET NCP Conversion
2.2 Ada Compiler Stress Testing . .

2.3 FDAS Project Support

2.4 NASA/GSFC Ada Programming Standards

2.5 Acquisition of NOSC Tools . . .

2,6 Alsys Ada Compiler Evaluation .

.

2,7 Satellite Servicing Project Support

2.8 Miscellaneous Support . . « . &

PROJECT EVALUATION . . . ¢ « &+ o + o

ii

PAGE

19

11

1,6 INTRODUCTION

In May of 1985, AdaSoft, Inc. was awarded a competitive
contract to provide support to the Mission and Data Operations
Directorate in the utilization of the Ada programming language
and environments to perform directorate functions. In particu-
lar, our support was to include the review of Ada related project
development plans, technical recommendations on the use of Ada,
expert assistance in response to queries about the use of Ada,
conducting of short seminars and problem solving sessions and
evaluation of Ada software development at NASA/GSFC,

The period of performance on this contract was one year with
a level of effort of approximately one-half man-year, The con-
tract technical officer was Mr. Robert Nelson of Code 522 at
NASA/GSFC.

2,9 SUMMARY OF WORK PERFORMED

During this contract, AdaSoft provided support to several
different projects and individuals in a number of different
Ada-related areas. This section contains a summary of support
provided by AdaSoft on this contract over the past year.

2.1 MNET NCP Conversion

The Mission and Data Operations Directorate Network (MNET)
conversion effort was chosen as the first task for evaluation and
assistance by AdaSoft. The MNET project required the re-writing
of the existing Network Control Program (NCP) in the Ada Program-
ming Language. The DEC Ada compiler running on the VAX under VMS
was used for the initial development effort. However, the major
reason for selecting this project was the desire to produce Ada
code that was transportable to other Ada compilers running on
other computers under other operating systems. A primary goal of
the AdaSoft participation in this project was to insure that Ada
design and programming practices that facilitate transportability
were being used.

After preliminary evaluation, AdaSoft identified several
areas of investigation with regard to the NCP project. Some of
these areas were also applicable to Ada usage in general. They
included a review of the current NCP generic design, a review of
NCP code and the investigation of problem areas encountered
during software development. '

During August, we continued assisting the NCP project. Joel
Cohen of CSC called to discuss potential problems with reading
network blocks into an Ada program such that the contents of the

blocks could be easily referenced. Briefly stated, the network
blocks have several different formats, so the most natural way of
storing them is in a variant record. However, the type of block

is defined by one or more bits within the block. Thus, a tech-
nique had to be devised to determine the block type, initialize

-1-

the discriminant to the proper value and store the block into the
variant record. We discussed various approaches for placing the
network block into a variant record with the appropriate discrim-
inant value using as little system-dependent code as possible.
We developed, compiled and tested several programs to illustrate
various approaches to handling network blocks as Ada variant
records, These test programs were provided to Joel Cohen of CSC.

In October, AdaSoft attended the Critical Design Review
(CDR) for the Generic MNET Ada/NCP. It was our opinion that the
level of detail presented was insufficient for a CDR and was more
appropriate for a Preliminary Design Review (PDR). We believe
the reasons for the lack of detail in the CDR were twofold,
First, members of the NCP project staff were incapacitated during
a portion of the design phase. Second, and more significant, is
the fact that none of the personnel assigned to this project were
experienced in the use of the Ada language. Therefore, much of
the design time was undoubtedly used learning Ada. This is
acceptable in a pilot project where the goal is to introduce the
Ada language or ascertain its effectiveness in an application
area and where no production software is to be generated under a
specified schedule and at a specified cost. The risks of under-
taking an Ada project without at least a core of analysts and
programmers that are experienced in the use of Ada include cost
overruns and/or the delivery of poorly designed and implemented
software. This can lead to the Ada language gaining an unde-
served reputation for being inefficient and unproductive. There-
fore, it was our recommendation that GSFC require one or more key
personnel who have significant experience in the design and
development of software systems in the Ada language be assigned
to all projects in which the Ada language will be used to produce
production software. The number of Ada literate personnel would
depend upon the size of the project.

In addition, we had some reservations about the design of
the NCP as prsented at the CDR. These concerns involved the use
of a single task, referred to as Transmission_Control Process
(TCP) to essentially control the flow of information through the
system. It appeared that the use of a single task here could
cause unnecessary delays in processing messages between different
users and the network. For example, while the TCP is processing
an input packet for user 1, an outgoing message from user 2 would
be delayed waiting to be serviced by the TCP. These appeared to
be independent operations so the processing of one should not
delay the processing of the other. Unfortunately, the reality of
the situation is that current Ada run-time implementations exe-
cute all tasks within a single process so that the processing
performed by one task will affect the processing of other tasks.
Our feeling is that while this is the reality of current imple-
mentations, a multi-tasking Ada system should be designed as if
each task were assigned to a separate processor and could be
eXxecuted in parallel except at rendezvous points. Our recommen-
dation was to analyze the TCP to determine where it could be sep-
arated into several tasks that might provide a smoother flow of
information through the system.

-2 -

Adasoft met with the NCP development team to discuss our
reservations concerning their design. The intent of this meeting
was to clarify our position and gain a better understanding of
the requirements that led to the current design., Following the
meeting, we generated an action item for the review board so that
the NCP team could make a formal response to our comments.

This project was cancelled in April of 1986. It is our
understanding that the decision had nothing to do with the use of
the Ada language but that an off-the-shelf package was found that
could provide the required functionality.

2.2 Ada Compiler Stress Testing

AdaSoft began work in June 1985 performing "stress" tests on
the newly delivered version of the DEC Ada compiler. The purpose
of these tests was to determine the performance limits of the DEC
Ada compiler,. AdaSoft obtained copies of a set of Whetstone
benchmark programs developed at GTE and used to compare the
performance of various Ada compilers. Comparable versions of
these benchmark programs existed in Ada, Fortran and Pascal.
Using these programs, the performance limits of the DEC Ada
compiler could be determined and could be compared to those of
the DEC Fortran and Pascal compilers. By running these prograns,
we hoped to obtain a comparison of the efficiency of the code
generated by each of the compilers.

The benchmark programs written in Ada, Fortran and Pascal
performed simple arithmetic operations contained within 1loops.
We inserted output statements in each program and compared the
results to insure that the programs were all producing the same
results, After it was determined that the results were consis-
tent, preliminary runs of the benchmark programs were made in a
non-standalone environment. The results of the runs indicated
that the Ada programs executed 38 to 48 percent faster than the
Fortran or Pascal programs, Since these results were unexpected,
assembly language code generated by each of the compilers was
obtained for further study. Preliminary study of the assembly
language code indicated that the Ada optimizer generated consi-
derably different machine language code from that of the Fortran
or Pascal optimizer and that, under certain conditions, the code
generated by the optimizer in the Ada compiler was more efficient
than that generated by other compilers.

It was determined that results from running the programs
being used in the comparative analysis of Ada, Fortran and
Pascal, had been published under a contract sponsored by WIS.
Our results verified those that were published under the WIS con-
tract.

In August 1985, the GRO Dynamic Simulator project requested
that AdaSoft perform a different type of "stress" test on the DEC
Ada compiler, These tests involved peforming various numbers of
concurrent Ada compilations to determine the operational impact

-3-

on the system and its users, We created and tested the DCL
command procedures required for performing the Ada compiler
stress tests as outlined by the GRO project. Standalone computer
time was obtained in early September to begin performing these
tests.

In September, AdaSoft completed stress tests of the DEC Ada
compiler. The results were presented to the GRO project manage-
ment team led by Mr. Frank McGarry. The group included repre-
sentatives from NASA management, the University of Maryland and
the GRO project working group. After reviewing the results, the
group agreed that it would be both interesting and informative to
see the same type of stress tests applied to a comparable set of
Fortran programs so that a comparison between the two development
environments could be made. Mr. McGarry agreed to provide the
Fortran programs and AdaSoft was directed to perform the neces-
sary computer runs and prepare a summary of results similar to
that presented for Ada.

Adasoft made several sets of runs in an attempt to evaluate
the performance of the DEC Ada compiler and subsequently to
compare its performance to that of the Dec Fortran IV-PLUS com-
piler. Some anomalies were observed while analyzing the Ada
compilation results. Initial runs were made on the DEC VAX-
11/788 with a Floating Point Accelerator (FPA), After these runs
were made, the 788 was upgraded to a 785, but with no FPA. The
same set of runs was made on this new configuration in early
October. As expected, these runs yielded better CPU times (ap-
proximately 10 percent less than the 788) but the elapsed time to
complete the runs ranged from approximately the same as that
obtained on the 780 for a single Ada compilation to 16# percent
more for five concurrent Ada compilations. The results of these
runs were discussed with the systems programmers and some modifi-
cations were made to certain VMS parameters. Then another set of
the same runs was made in late October that yielded CPU times
that were approximately 3@ percent less than those of the origi-
nal 780 runs but elapsed times that were still as much as 100
percent more than the original 780 runs. These results were
reported to the systems programmers,.

Another anomaly that occurred during these tests was the
inability to duplicate elapsed times for the same runs, even when
these runs were made back-to-back. These tests were conducted in
a standalone environment so it was expected that the results of
the same runs performed in the same evening would be almost
exactly the same. It was observed, however, that the results of
a run consisting of several concurrent Ada compilations differed
by as much as 10 percent from those obtained making the same run
a few minutes later. Neither AdaSoft nor the systems programmers
had an explanation for this but it might have been caused by disk
I/0 contention since all user data sets accessed during a run
were on the same disk.

In December, we re-ran the Ada compiler stress tests. The
reason that these tests were re-run is that the VAX-11/785 had a
Floating Point Accelerator (FPA) installed.

In all, three sets of Ada compiler stress test runs were
made on the DSTL VAX-11/78x. The first set was made on September
4, 1985, The system configuration at that time consisted of a
VAX-11/788 with FPA and no VAX cluster. The second set of runs
was made on October 18, 1985. The 788 had been upgraded to a 785
but no FPA was installed. Also, the 785 was running as part of a
VAX cluster with the 756 and 86048. The results of these runs
were not reported previously because it was difficult to obtain a
consistent set of times. Because of the length of time these
runs took, only a maximum of five concurrent compilations were
run.

When comparing the three sets of runs, two observations
can be made. First, running the DEC Ada compiler on a VAX-11/78%x
without a Floating Point Accelerator is not recommended. Second,
it appears that the VAX cluster has some impact on the compila--
tion wall clock times when several (four or more) compilations
are being run concurrently.

At the suggestion of the GRO management team, We ran
"stress" tests on the DEC Fortran compiler similar to those run
previously on the DEC Ada compiler. The Fortran programs used in
the tests were selected by Frank McGarry of GSFC. They consisted
of three Fortran programs, one of which was a main program and
the other two were subprograms. Collectively, they contained
approximately 225 non-comment statements. The environment 1in
which they were run consisted of a VAX-11/785 with Floating Point
Accelerator running as part of a VAX cluster. No other users
were on the system when the tests were run., Comparing the re-
sults of these tests with earlier Ada "stress" tests shows that
the impact of multiple concurrent Fortran compilations on the
system is approximately one-third that of the Ada compilations,

2.3 FDAS Project Support

In July, AdaSoft presented a tutorial to FDAS project
members on access types and dynamic memory management in Ada. We
also began attending some of the FDAS weekly project meetings.
We studied the FDAS requirements and preliminary design docu-
ment s, After studying these documents, we presented certain
suggestions and comments to the FDAS project members concerning
the design of the system.

We continued to attend FDAS weekly meetings for about two
months and provided comments on the ongoing systems design. The
final set of comments was provided in the form of a written
report delivered to Bob Nelson and the FDAS project management.

2,4 NASA/GSFC Ada Programming Standards

In September, AdaSoft assisted in presenting the concept of
a NASA Ada Programming Standard to the GSFC Ada User's Group.
With the assistance of Mr. Dan Roy of Century Computing and Mr.
Ed Seidowitz of GSFC, a presentation was made to the user's group
that addressed various aspects of Ada style. A questionnaire was
developed and distributed to the user's group meeting in an
attempt to sample the feeling of the group toward programming
standards in general and Ada Programming Standards in particular.

In December, AdaSoft assisted Bob Nelson in organizing a
working group to investigate the feasibility of producing Ada
programming standards that might be used by new Ada projects at
GSFC and perhaps used NASA-wide. The working group is comprised
of 10 individuals that represent both GSFC and contractors that
are working in Ada.

Paul Maresca attended the first meeting of this working
group which was held on December 17. The primary issue discussed
at the meeting was exactly what the objectives of the working
group should be. Since Ada programming standards could conceiv-
ably address the entire software life cycle, some limited and
hopefully achievable short-term goals had to be established for
the group. '

We were of the opinion that the group should address itself
first to Ada coding and internal documentation (prologue and
comments) standards. It was our feeling that GSFC and all of
NASA should establish rigid standards in the area of coding and
internal documentation for all delivered Ada code. This has two
obvious benefits. First, programmers and programming teams do
not waste time determining how their code should be formatted and
documented and perhaps take time developing their own project
standards. Second, all delivered code would look essentially the
same, allowing programmers performing maintenance of Ada code
which they did not write to feel "comfortable" with the code.
Finally, every attempt should be made to make the prologues
machine-readable. This would permit tools to be written to
access these prologues to facilitate the reuseability of existing
Ada code.

To support the rigid standards for delivered Ada code, we
suggested that a software tool be developed to verify delivered
source code, This could be supplied as GFE to all contractors
developing Ada code for NASA,. At the least, this tool could
check prologues for valid content and format and reformat where
possible; format the source code to the standard where necessary:
and check for and report the use of non~transportable or imple-
mentation dependent features, Any additional tools constructed
to reference the prologues could also be furnished as GFE where
appropriate.

At the meeting on December 17, the group decided to collect
all relevant existing standards and bring them to the next meet-
ing. It was intended that these existing standards be used as a
basis for the work of the Ada programming standards group.

During January, Paul Maresca attended the sessions of the
Ada Programming Standards Working Group. At the first meeting of
this group in January, he provided the members with copies of an
article from the January, February 1986 Ada LETTERS that
addressed Ada coding standards. Several additional sources of
Ada programming standards and styles were presented at this
meeting. As in previous meetings, the question of exactly what
this group should produce was discussed.

We stated the opinion that the first product of the working
group should address coding and internal documentation in a
clear, concise and rigid manner, Each point in this document
must be well thought out and clearly described. It must be
accompanied by examples and motivation (i.e., an explanation of
why this particular style element was adopted, what others were
considered and why they were rejected)., Collectively, the moti-
vation for choosing a particular style could be treated as a
separate rationale document. We believed that without a ration-
ale for specifying a particular style, a list of rules and/or
guidelines will be dismissed as another attempt to curtail pro-
grammer creativity. In fact, to "sell" this type of standard to
programmers, it would be necessary to convince them that trying
to evolve their own individual style for coding and internal
documentation is a waste of time, effort and creativity that
could be better applied to program design, implementation and
testing. 1In general, programmers or even projects evolving their
own style leads to loss of productivity during the development
phase and the resultant inconsistent styles ultimately lead to
lost productivity during the maintenance phase,

Al so, at the first January meeting, Ed Seidewitz of GSFC
presented an outline of a programming standards guide, The
second meeting in January involved reviewing this guide. We
reviewed this guide and voiced our opinion that it covered issues
of design and language usage that were beyond what should be
initially produced by the working group. However, this guide was
a reasonable place to begin the process of generating an Ada
programming style guide, As indicated previously, we felt that
any style guide must have examples and motivation for each speci-
fied element of style. In addition, much of the wording in the
original guide was either vague or too "high-tech.," Each style
element must be atomic and must be defined in a manner that any
programmer can under stand.

Paul Maresca continued attending the Ada Programming Stand-
ards wWorking Group meetings. A draft of the programming stand-
ards gquide prepared by Ed Seidewitz was entered into the VAX and
we obtained printed copies of this draft. We reviewed this draft
and noted modifications where we felt they were necessary.

-7-

Although our contract has ended, the work of the Ada Programming
Standards Group is by no means finished. We plan to continue
attending their meetings and assisting in the development of a
NASA/GSFC Ada programming standard.

2.5 Acquisition of NOSC Tools

In early January we responded to an announcement in the Ada
Information Clearinghouse Newsletter indicating the availability
of the Ada NOSC tools on magnetic tape from White Sands Missile
Range, We obtained two magnetic tapes from Bob Nelson and sent
these tapes to White Sands Missile Range to obtain copies of the
Ada NOSC tool set that was developed under Government contract to
NOSC. There are many different types of tools included in this
set, some of which may be of use to GSFC. We intended to load
these tools onto the 528 VAX and study them with the goal of

determining what tools might be useful for work being done at
GSFC.

We requested that the software be written on the tapes in a
format readable on a DEC VAX. We were initially assured that the
software would be sent to us quickly. However, as of the end of
February, we still had not secured the software, We made several
inquiries during the month to WSMR concerning the whereabouts of
the tapes. After the second inquiry in early February, we were
told that the tapes were being mailed and would arrive within the
week., When they did not arrive, we made further inguiries and
finally determined that WSMR was having problems writing the
software on tape in a format readable by the DEC VAX under the
VMS operating system. They had no projected date for the resolu-
tion of this problem. We could have obtained the software in a
format readable under the UNIX operating system, but we knew of
no such system at GSFC that would be available to us.

Although AdaSoft continued attempting to obtain a copy of
the NOSC tools from White Sands Missile Range, we had not re-
ceived them prior to the end of the contract. However, we
learned that the University of Maryland had obtained the NOSC
tools and had them available on a VAX running under the UNIX
operating system. They indicated that they had the capability of
writing tapes in a format that could be read on a VAX running the
VMS operating system. We obtained a directory 1listing of the
files containing the NOSC tools that were resident on the
Maryland computer. We contacted Beth Katz of the University of
Maryland and visited her at the university to obtain prologue
listings for certain tools that we felt would be of interest to
GSFC. The prologues give a brief description of what each of the
tools do,

Prior to the end of the contract, AdaSoft had not actually
obtained any of the NOSC tools in VAX VMS readable format from
the University of Maryland. This is an effort that could be
pursued by Government personnel as time permits since there does
appear to be some worthwhile software available in the tool set.

-8~

2.6 Alsys Ada Compiler Evaluation

In late March of 1986, AdaSoft purchased the new Alsys Ada
compiler for the IBM PC AT. We obtained a pre-validated version
of the compiler and all of the information contained in this
report is based on the use of that compiler, The compiler was
validated in late April, but we had not yet obtained a copy of
the validated version. We, at AdaSoft, believe that the avail-
ability of a validated Ada compiler on a personal computer is a
major milestone in the maturation of the language since it makes
the language accessible to a much greater number of programmers,

In conjunction with Bob Nelson, it was determined that it
would be useful and informative to perform an evaluation of the
new Alsys Ada compiler. Dan Roy of Century Computing had just
completed work on an Ada compiler evaluation suite. He had run
the suite on both the DEC Ada Compilation System (ACS), and the
DG/ROLM Ada Development Environment (ADE) and had prepared a
report comparing the two systems, With the approval of Bob
Nelson, Dan Roy and Paul Maresca selected a subset of the eval-
uation suite to run on the Alsys compiler. The programs in the
subset were transmitted from the DEC VAX to an IBM PC AT and
compiled using the Alsys Ada compiler. Some minor problems were
detected during compilation and were easily corrected, Most of
these problems were caused by a difference in the size of the
predefined type INTEGER between the Alsys compiler and the other
compilers tested. Objects of type INTEGER use 16 bits on the

Alsys compiler whereas they use 32 bits on the DEC ACS and DG
ADE.

On April 15, Paul Maresca and Dan Roy presented the results
of the Alsys compiler evaluation to the GSFC Ada Users Group. We
also assisted Alsys personnel in demonstrating the Alsys compiler
at that meeting. AdaSoft has prepared a separate report concern-
ing the evaluation that contains not only results from the eval-
uation suite but a discussion of the facilities provided within
the Alsys Ada environment.

2,7 Satellite Servicing Project Support

During April and May of 1986, AdaSoft provided assistance to
the Satellite Servicing Project (SSP) at GSFC. This group is
procuring the Alsys Ada compiler, AdaSoft had been shipped an
extra copy of the compiler and was asked by Alsys to deliver that
copy to GSFC until their copy was delivered. Bob Nelson provided
the extra copy of the compiler to Barbara Scott of the SSP and
Paul Maresca of AdaSoft installed the compiler on her IBM PC at
GSFC.

The reason that the SSP is procuring the Alsys Ada compiler
is that they are planning to obtain the Operations And Science
Instrument Support Workstation (OASIS) system from the University
of Colorado where it was developed and rehost it to the IBM PC AT
using the Alsys Ada compiler. The development of the OASIS

-9~

system was funded by NASA's Office of Space Science and Applica-
tions so it should be available to GSFC at no cost, OASIS 1is
written in Ada and is being developed on DEC VAX computers using
the DEC Ada compiler. It can be used to operate and test a
simulated or actual scientific instrument,

Since AdasSoft had Jjust completed rehosting approximately
25,800 lines of Ada code from the DEC Ada compiler to the Alsys
compiler, we met with Barbara Scott to discuss the rehosting of
OASIS. She indicated that they had a meeting scheduled with
representatives from the University of Colorado to discuss the
rehosting. She asked us to prepare a list of questions for the
meeting which we did. On April 23, we attended the meeting,
discussed the rehosting and asked the questions that we had
prepared. Barbara asked us to prepare a memo containing those
questions and any additional questions we had so she could for-
ward the memo to the University of Colorado to obtain complete
answers, We prepared the memo as requested and submitted it to
Barbara for forwarding.

During the meeting with the developers of OASIS, it became
evident that some of the potential rehosting problems might arise
from limitations imposed by the Alsys environment or from certain
Ada language facilities that were not yet implemented in the
Alsys Ada compiler. We offered to attempt to obtain answers to
the questions concerning the Alsys implementation and report our
findings to Barbara. She accepted our offer and we have dis-
cussed the potential problem areas with Alsys and have presented
her with our findings.

2.8 Miscellaneous Support

During June of 1985, AdaSoft followed-up on STL System
Performance Reports submitted by users concerning problems en-
countered using the beta test site version of the DEC Ada com-
piler. When version 1.0-7 of the DEC compiler was installed at
GSFC, AdaSoft attempted to recreate the situations that caused
the problems to determine whether they still existed in the new
version,

At the October meeting of the GSFC Ada Users Group, we
reported the results obtained from running Whetstone benchmark
programs written in Ada and Fortran. These programs were com-
piled using the DEC Ada compiler and the DEC Fortran compiler
respectively and were run on the DEC VAX-11/789.

During October, Bob Nelson was asked by Joel Wakeland of Bay
St. Louis to provide some benchmark programs to be used in the
procurement of an Ada environment for the development of the
Space Station DMS Payload Simulator. Because the Ada Whetstone
benchmark programs that we had used tested only Fortran-like
computational capabilities, AdaSoft modified some code that we
had developed so that it could be used as a benchmark test pro-
gram, It contained additional Ada facilities such as dynamic

-1¢-

memory allocation, the use of unconstrained types, multi-tasking
with the use of dynamic task creation and removal and exception
handling.

On November 8, AdaSoft attended the GRO project PDR. our
opinion of the PDR was that it was well done, All of the techni-
cal areas were covered at the level expected in a PDR and some

were presented in considerably more detail than might be expect-
ed.

Also in November, Paul Maresca participated in a meeting
with Tom Rennie of GSFC concerning Ada Training for Goddard.
Also present at this meeting were Bob Nelson, Bob Murphy and a
colleagque of Mr. Rennie., Several approaches to obtaining train-
ing for GSFC personnel and contractors were discussed. Also, the
need for making GSFC management aware of what is happening in
Ada, what will be happening in the future, and what actions
should be taken to ensure that GSFC is prepared were discussed,

On March 11, Paul Maresca of AdaSoft attended the Critical
Design Review for the Ada version of the GRO Dynamic Simulator.
In our opinion, this was a very good CDR. It presented the
operational aspects of the simulator in sufficient detail so that
potential users could understand how various inputs cause the
system to perform its designated functions and generate the
desired results. Also, the system design was described in enough
depth that it was clear that the designers understood the prob-
lem, One thing that was evident during the presentation was that
the lack of knowledge of Ada and the Object Oriented Design
methodology by most of the attendees caused some difficulties in
understanding the design as presented. Hopefully, this problem
will be alleviated as more projects are implemented in the Ada
language using design methodologies that are suited to the feat-
ures of the language,

3.0 PROJECT EVALUATION

As illustrated in the preceding section, AdaSoft provided
support in many different areas during the period of performance
of this project. It was gratifying to be able to assist some of
these projects in their use of Ada. However, it was disappoint-
ing not to see more projects adopting the Ada language. Perhaps
with the selection of Ada for the Space Station, more managers
will feel comfortable with the use of Ada. It should be noted
that the acceptance of Ada at GSFC mirrors its slower-than-
expected acceptance by other organizations. There seems to be
three major reasons for the slowness with which Ada is being
accepted: the lack of production quality Ada compilers; the
scarcity of well-trained Ada programmers; and the idea that Ada
is "just another language."

The first problem - the lack of production quality compilers
- is being resolved to some extent with the introduction of the
DEC, Verdix and Alsys compilers as well as several others. These

-11-

compilers are generating code whose run-time efficiency is com-
parable to that of other higher-order languages. However, the
compilation speed of the current Ada compilers is well below that
of compilers for other languages which reduces programmer produc-
tivity. Also, we know of no validated Ada compiler that current-
ly compiles the entire language.

We currently see no imminent solution to the scarcity of
well-trained Ada programmers. There are many efforts underway to
address this problem with perhaps as many proposed solutions as
there are efforts, There appears to be no organized and well-
directed effort either within GSFC or outside of it to attack
this problem. There are short courses; there are long courses;
there are hands-on courses; there are lecture-only courses; and
there are Computer Assisted Instruction Courses (CAI), We feel
that a mixture of these approaches applied in the correct order
is what is required to train Ada programmers. We believe that
Ada training should begin with a CAI course that covers all
features of the language to at least an introductory level, The
reason for using a CAI course first is that it is self-paced.
The student can use the course whenever time permits; can move
through it at a comfortable pace and can review concepts whenever
necessary. Once the CAI course has been completed, a three to
five day lecture course should follow that would provide an
overview of Ada by a knowledgeable instructor. The student would
be in a much better position to ask intelligent and informed
questions after having completed the CAI course, Following the
short lecture course, the student should take a six to eight week
course that would include both lectures and hands-on use of the
Ada language. The lectures could be held two or three times a
week with at least one major project to be implemented in 2Ada
during the course, At this point, the student would be prepared
to serve as a non-lead member of an Ada programming team,

The final problem, and perhaps the most difficult to over-
come, is the attitude taken by some programmers and many managers
that Ada is Jjust another programming language that can be
"picked-up" in a week or so whenever needed. This attitude has
caused many Government contractors to postpone Ada training until
it is required to either bid or actually perform on a Government
contract, This causes Government management to see a lack of
experienced Ada programmers with which to staff their projects
and makes them reluctant to choose Ada as their implementation
language,

Certainly Ada is a programming language, but it is a complex
and powerful language that reguires both training and experience
to use effectively. Perhaps more important than the 1language
itself are the concepts upon which it is based. The concepts of
incapsulation, abstraction, packaging, modularity, reuseability
and maintainability. These concepts are forming the basis for
much of the ongoing research in software engineering. Also,
important work is being done in design methodologies and Program
Design Languages that support and facilitate the use of Ada. It

-12-

/

is important for programmers not only to be knowledgeable in the
Ada language, but to be familiar with the efforts that center
around Ada to produce higher quality software.

-13-~

